Performance Analysis

Predict performance of parallel programs
Understand barriers to higher performance
General speedup formula

Amdahl’s Law

Gustafson-Barsis’ Law

Karp-Flatt metric

Isoefficiency metric

Speedup Formula

Sequential execution time

Speedup = .
peedtip Parallel execution time

Execution Time Components:

"Inherently sequential computations: o(n)

"Potentially parallel computations: ¢(n)

*Communication operations: «k(n,p)

Speedup Expression

Given the components of the execution time, can
develop a formula for the speedup that depends on
the size of the problem, n, and the number of

processors, p.

o(n)+¢(n)
+@(n)/p+x(np)

w(n,p)sg(n)

G(n)/p

HHHHHHHHHHHDD

K(n,p)

¢(n)/p + «(n,p)

Tl

Speedup Plot

Efficiency

Sequential execution time

Efficiency —))
y Processors XParallel execution time

Speedup

Efficiency =
Processors

Efficiency is a fraction:
0<¢gnp =<1

o(n) 16 (n)
A oy e ey

All terms > 0 = ¢(n,p) > 0

Denominator > numerator = ¢(n,p) <1

Amdahl’s Law

w(np)< =t “oln
o(n)+@(n)/p+x(np)
gln)+@(n

VP)< e (s

Let f = o(n)/(c(n) + ¢(n)); i.e., f isthe
fraction of the code which is inherently sequential

1
L gy

Example 1

95% of a program’s execution time occurs inside a
loop that can be executed in parallel. What is the
maximum speedup we should expect from a
parallel version of the program executing on 8
CPUs?

1
WSO.05+(1—0.05)/8_5'9

Example 2

20% of a program’s execution time is spent within
inherently sequential code. What is the limit to the
speedup achievable by a parallel version of the
program?

L 1.5
0.2+(1-0.2)/p 0.2

[.imitations of Amdahl’s Law

Ignores K(n,p) - overestimates speedup

Assumes f constant, so underestimates speedup
achievable

Amdahl Effect

Typically o(n) and k(n,p) have lower complexity than
¢(n)/p

As n increases, ¢p(n)/p dominates o(n) & k(n,p)
As n increases, speedup increases

As n increases, sequential fraction f decreases.

Illustration of Amdahl Effect

Speedup
n = 10,000

n = 1,000

n=100

Processors

Review of Amdahl’s Law

Treats problem size as a constant

Shows how execution time decreases as number of
processors increases

Another Perspective - Gustafson-Barsis’s
Law

We often use faster computers to solve larger
problem instances

Let’s treat time as a constant and allow problem
size to increase with number of processors

Gustafson-Barsis’s L.aw

o(n)+d(n)
(n)+(n)/p

Let T, =o(n)+¢(n)/p =1 unit

w(n,p)SG

Let s be the fraction of time that a parallel program
spends executing the serial portion of the code.

s = o(n)/(o(n)*+¢(n)/p)
Then,

Y =T/T =T, <=s+p*(1-s) (the scaled speedup)

Gustafson-Barsis’s Law (cont.)

Thus, sequential time would be p times the parallelized
portion of the code plus the time for the sequential portion.

P <=s+p*(1-s) (the scaled speedup)
Restated,
y<pt(l-p)s

Thus, sequential time would be p times the parallel execution
time minus (p-1) times the sequential portion of execution time.

Summary of applying Gustafson-Barsis’s
Law

Begin with parallel execution time and estimate
the time spent in sequential portion.

Predicts scaled speedup (Sp - ¢ - same as T))

Estimate sequential execution time to solve same
problem (s)

Assumes that s remains fixed irrespective of how
large is p - thus overestimates speedup.

Problem size (s + p*(1-s)) is an increasing function
of p

Example 1

An application running on 10 processors spends
3% of its time in serial code. What is the scaled
speedup of the application?

w=10+(1-10)(0.03)=10-0.27=9.73

...except 9 do not have to execute serial code

Execution on 1 CPU takes 10 times as long...

What is the maximum fraction of a
program’s parallel execution time that can
be spent in serial code if it is to achieve a
scaled speedup of 7 on 8 processors?

7=8+(1-8)s=>s~0.14

Amdahl’s L.Law and Gustafson-Barsis’ L.aw
ignore K(n,p)

They can overestimate speedup or scaled
speedup

Karp and Flatt proposed another metric

Inherently serial component
of parallel computation +
processor communication and

0] (n) + K(n,p) synchronization overhead

e= ; (-) N ¢ (n) Single processor execution time

- 1/y—=1/p
1-1/p

Takes into account parallel overhead

Detects other sources of overhead or
inefficiency ignored in speedup model

®Process startup time
®Process synchronization time
¢Imbalanced workload

¢ Architectural overhead

What is the primary reason for speedup of only 4.7 on 8 CPUs?

Since e is constant, large serial fraction is the primary reason.

What is the primary reason for speedup of only 4.7 on 8 CPUs?

Since e is steadily increasing, overhead is the primary reason.

Parallel system: parallel program executing
on a parallel computer

Scalability of a parallel system: measure of
its ability to increase performance as
number of processors increases

A scalable system maintains efficiency as
processors are added

[soetficiency: way to measure scalability

Begin with speedup formula
Compute total amount of overhead
Assume efficiency remains constant

Determine relation between sequential
execution time and overhead

Determine overhead

T,(np)=(p=1)o(n)+pk(np)
Substitute overhead into speedup equation

plo(n)+¢(n))
n)+@(n)+Ty(np)

Substitute T(n,1) = o(n) + ¢(n). Assume efficiency is constant.
Hence, T,/T, should be a constant fraction.

I (n,l)Z CTO (np) Isoefficiency Relation

t/f(n,p)éd(

Suppose isoefficiency relation is n > f(p)

Let M(n) denote memory required for
problem of size n

M(f(p))/p shows how memory usage per
processor must increase to maintain same

efficiency
We call M(f(p))/p the scalability function

To maintain efficiency when increasing p, we must
increase n

Maximum problem size limited by available
memory, which is linear in p

Scalability function shows how memory usage per
processor must grow to maintain efficiency

Scalability function a constant means parallel
system is perfectly scalable

105$9201d 13d papasu AIOWIA

Cannot maintain
efficiency

Memory Size

Cplogp

Can maintain
efficiency

Clogp

Sequential algorithm complexity

T(n,1) = ©(n)

Parallel algorithm

¢Computational complexity = O(n/p)
¢Communication complexity = O(log p)

Parallel overhead
Ty(n,p) = O(p log p)

Isoetficiency relation: n > C p log p

We ask: To maintain same level of
efficiency, how must n increase when p

Increases?
M(n) =n
M (Cplog p)/ p=Cplog p/ p=Clog p

The system has good scalability

Sequential time complexity: O(n’)

Paral
Paral

Paral

e
e

el overhead: T,(n,p) = ©(pnlog p)

| computation time: ®(n’/p)
| communication time: ©(n<log p)

I[soetficiency relation
n°"> C(pnilogp)=>n>=Cplogp

M(n) = n?

M (Cplog p)/ p=C* p*log” p/p=C” plog’ p

The parallel system has poor scalability

Performance terms
Speedup
Efficiency

Model of speedup
Serial component
Parallel component

Communication component

What prevents linear speedup?
Serial operations
Communication operations
Process start-up
Imbalanced workloads
Architectural limitations

Analyzing parallel performance
Amdahl’s Law
Gustafson-Barsis’ Law
Karp-Flatt metric

Isoetficiency metric

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

