Performance Analysis

- Predict performance of parallel programs
- Understand barriers to higher performance
- General speedup formula
- Amdahl's Law
- Gustafson-Barsis' Law
- Karp-Flatt metric
- Isoefficiency metric

Speedup Formula

Speedup =
$$\frac{\text{Sequential execution time}}{\text{Parallel execution time}}$$

Execution Time Components:

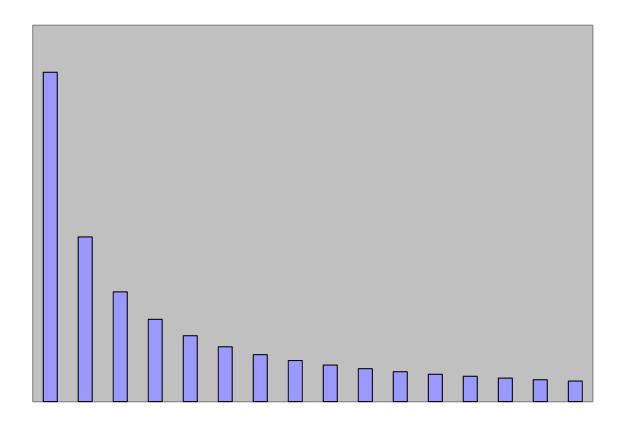
- •Inherently sequential computations: $\sigma(n)$
- •Potentially parallel computations: $\phi(n)$
- •Communication operations: $\kappa(n,p)$

Speedup Expression

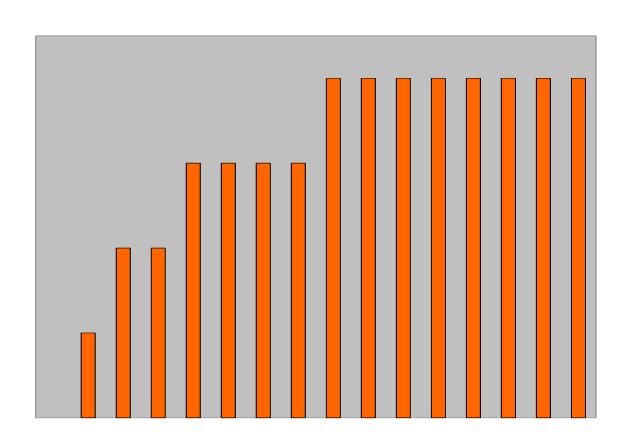
Given the components of the execution time, can develop a formula for the speedup that depends on the size of the problem, *n*, and the number of processors, *p*.

$$\psi(n,p) \le \frac{\sigma(n) + \phi(n)}{\sigma(n) + \phi(n)/p + \kappa(n,p)}$$

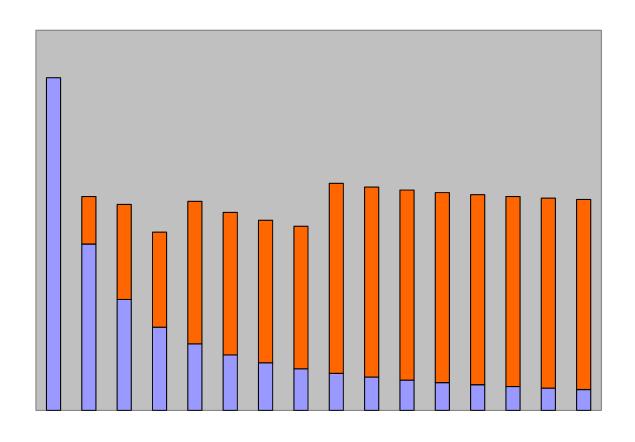
$\phi(n)/p$



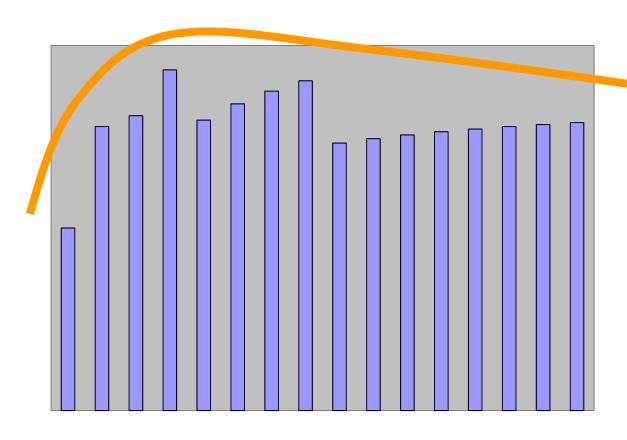
$\kappa(n,p)$



$$\phi(n)/p + \kappa(n,p)$$



Speedup Plot



Efficiency

$$Efficiency = \frac{Sequential\ execution\ time}{Processors \times Parallel\ execution\ time}$$

Efficiency =
$$\frac{\text{Speedup}}{\text{Processors}}$$

Efficiency is a fraction: $0 \le \varepsilon(n,p) \le 1$

$$\varepsilon(n,p) \leq \frac{\sigma(n) + \phi(n)}{p\sigma(n) + \phi(n) + p\kappa(n,p)}$$

All terms $> 0 \Rightarrow \varepsilon(n,p) > 0$

Denominator > numerator $\Rightarrow \varepsilon(n,p) < 1$

Amdahl's Law

$$\psi(n,p) \leq \frac{\sigma(n) + \phi(n)}{\sigma(n) + \phi(n)/p + \kappa(n,p)}$$

$$\psi(n,p) \leq \frac{\sigma(n) + \phi(n)}{\sigma(n) + \phi(n)/p}$$

Let $f = \sigma(n)/(\sigma(n) + \phi(n))$; i.e., f is the fraction of the code which is inherently sequential

$$\psi \leq \frac{1}{f + (1 - f)/p}$$

Example 1

95% of a program's execution time occurs inside a loop that can be executed in parallel. What is the maximum speedup we should expect from a parallel version of the program executing on 8 CPUs?

$$\psi \le \frac{1}{0.05 + (1 - 0.05)/8} \approx 5.9$$

Example 2

20% of a program's execution time is spent within inherently sequential code. What is the limit to the speedup achievable by a parallel version of the program?

$$\frac{1}{0.2 + (1 - 0.2)/p} = \frac{1}{0.2} = 5 i$$

Limitations of Amdahl's Law

- Ignores $\kappa(n,p)$ overestimates speedup
- Assumes f constant, so underestimates speedup achievable

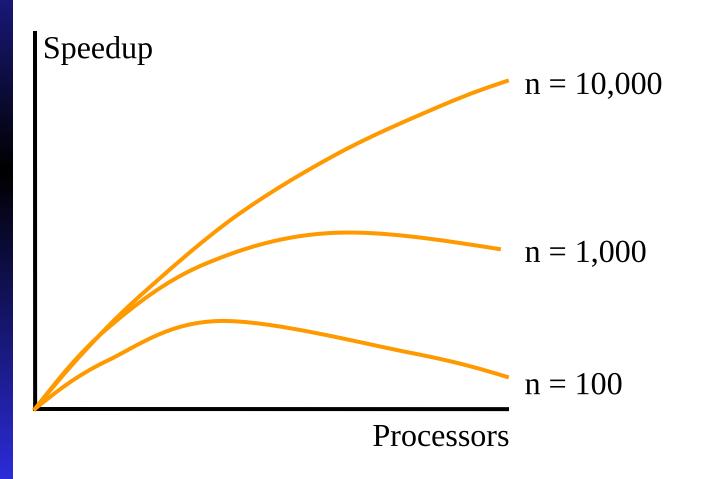
Amdahl Effect

Typically $\sigma(n)$ and $\kappa(n,p)$ have lower complexity than $\phi(n)/p$

As *n* increases, $\phi(n)/p$ dominates $\sigma(n) \& \kappa(n,p)$

- As n increases, speedup increases
- As n increases, sequential fraction f decreases.

Illustration of Amdahl Effect



Review of Amdahl's Law

- Treats problem size as a constant
- Shows how execution time decreases as number of processors increases

Another Perspective - Gustafson-Barsis's Law

- We often use faster computers to solve larger problem instances
- Let's treat time as a constant and allow problem size to increase with number of processors

Gustafson-Barsis's Law

$$\psi(n,p) \leq \frac{\sigma(n) + \phi(n)}{\sigma(n) + \phi(n)/p}$$

Let $T_p = \sigma(n) + \phi(n)/p = 1$ unit

Let *s* be the fraction of *time* that a parallel program spends executing the serial portion of the code.

$$s = \sigma(n)/(\sigma(n) + \phi(n)/p)$$

Then,

$$\psi = T_1/T_p = T_1 \le s + p*(1-s)$$
 (the scaled speedup)

Gustafson-Barsis's Law (cont.)

Thus, sequential time would be *p* times the parallelized portion of the code plus the time for the sequential portion.

$$\psi \le s + p*(1-s)$$
 (the scaled speedup)

Restated,

$$\psi \leq p + (1-p)s$$

Thus, sequential time would be p times the parallel execution time minus (p-1) times the sequential portion of execution time.

Summary of applying Gustafson-Barsis's Law

- Begin with parallel execution time and estimate the time spent in sequential portion.
- Predicts scaled speedup (Sp ψ same as T_1)
- Estimate sequential execution time to solve same problem (s)
- Assumes that s remains fixed irrespective of how large is *p* thus overestimates speedup.
- Problem size (s + p*(1-s)) is an increasing function of p

Example 1

An application running on 10 processors spends 3% of its time in serial code. What is the scaled speedup of the application?

$$\psi = 10 + (1 - 10)(0.03) = 10 - 0.27 = 9.73$$

...except 9 do not have to execute serial code

Execution on 1 CPU takes 10 times as long...

Example 2

What is the maximum fraction of a program's parallel execution time that can be spent in serial code if it is to achieve a scaled speedup of 7 on 8 processors?

$$7 = 8 + (1 - 8) s \Rightarrow s \approx 0.14$$

The Karp-Flatt Metric

- Amdahl's Law and Gustafson-Barsis' Law ignore $\kappa(n,p)$
- They can overestimate speedup or scaled speedup
- Karp and Flatt proposed another metric

Experimentally Determined Serial Fraction

$$e = \frac{\sigma(n) + \kappa(n,p)}{\sigma(n) + \phi(n)}$$

Inherently serial component of parallel computation + processor communication and synchronization overhead

Single processor execution time

$$e = \frac{1/\psi - 1/p}{1 - 1/p}$$

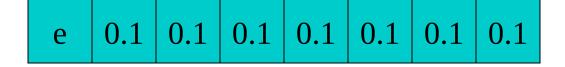
Experimentally Determined Serial Fraction

- Takes into account parallel overhead
- Detects other sources of overhead or inefficiency ignored in speedup model
 - ◆Process startup time
 - ◆Process synchronization time
 - ◆Imbalanced workload
 - Architectural overhead

Example 1

p	2	3	4	5	6	7	8
ψ	1.8	2.5	3.1	3.6	4.0	4.4	4.7

What is the primary reason for speedup of only 4.7 on 8 CPUs?



Since *e* is constant, large serial fraction is the primary reason.

Example 2

p	2	3	4	5	6	7	8
ψ	1.9	2.6	3.2	3.7	4.1	4.5	4.7

What is the primary reason for speedup of only 4.7 on 8 CPUs?

e	0.070	0.075	0.080	0.085	0.090	0.095	0.100
---	-------	-------	-------	-------	-------	-------	-------

Since *e* is steadily increasing, overhead is the primary reason.

Isoefficiency Metric

- Parallel system: parallel program executing on a parallel computer
- Scalability of a parallel system: measure of its ability to increase performance as number of processors increases
- A scalable system maintains efficiency as processors are added
- Isoefficiency: way to measure scalability

Isoefficiency Derivation Steps

- Begin with speedup formula
- Compute total amount of overhead
- Assume efficiency remains constant
- Determine relation between sequential execution time and overhead

Deriving Isoefficiency Relation

Determine overhead

$$T_{o}(n,p) = (p-1)\sigma(n) + p\kappa(n,p)$$

Substitute overhead into speedup equation

$$\psi(n,p) \leq \frac{p(\sigma(n) + \phi(n))}{\sigma(n) + \phi(n) + T_0(n,p)}$$

Substitute $T(n,1) = \sigma(n) + \phi(n)$. Assume efficiency is constant. Hence, T_0/T_1 should be a constant fraction.

$$T(n,1) \ge CT_0(n,p)$$
 Isoefficiency Relation

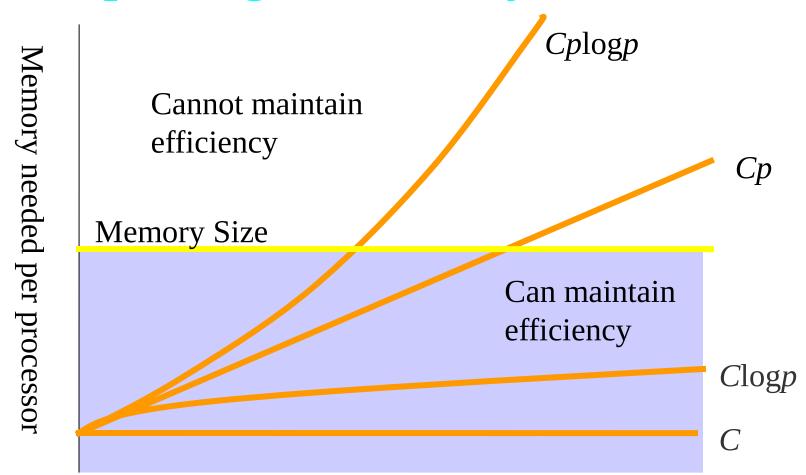
Scalability Function

- Suppose isoefficiency relation is $n \ge f(p)$
- Let M(n) denote memory required for problem of size n
- M(f(p))/p shows how memory usage per processor must increase to maintain same efficiency
- We call M(f(p))/p the scalability function

Meaning of Scalability Function

- To maintain efficiency when increasing *p*, we must increase *n*
- Maximum problem size limited by available memory, which is linear in p
- Scalability function shows how memory usage per processor must grow to maintain efficiency
- Scalability function a constant means parallel system is perfectly scalable

Interpreting Scalability Function



Example 1: Reduction

- Sequential algorithm complexity $T(n,1) = \Theta(n)$
- Parallel algorithm
 - ♦Computational complexity = $\Theta(n/p)$
 - ♦Communication complexity = $\Theta(\log p)$
- Parallel overhead $T_0(n,p) = \Theta(p \log p)$

Reduction (continued)

- Isoefficiency relation: n ≥ C p log p
- We ask: To maintain same level of efficiency, how must *n* increase when *p* increases?
- M(n) = n $M(Cp \log p) / p = Cp \log p / p = C \log p$
- The system has good scalability

Example 2: Floyd's Algorithm

- Sequential time complexity: $\Theta(n^3)$
- Parallel computation time: $\Theta(n^3/p)$
- Parallel communication time: $\Theta(n^2 \log p)$
- Parallel overhead: $T_o(n,p) = \Theta(pn^2 \log p)$

Floyd's Algorithm (continued)

- Isoefficiency relation $n^3 \ge C(p \ n^3 \log p) \Rightarrow n \ge C \ p \log p$
- $M(n) = n^2$

$$M(Cp \log p)/p = C^2 p^2 \log^2 p/p = C^2 p \log^2 p$$

The parallel system has poor scalability

Summary (1/3)

- Performance terms
 - Speedup
 - Efficiency
- Model of speedup
 - Serial component
 - Parallel component
 - Communication component

Summary (2/3)

- What prevents linear speedup?
 - Serial operations
 - Communication operations
 - Process start-up
 - Imbalanced workloads
 - Architectural limitations

Summary (3/3)

- Analyzing parallel performance
 - Amdahl's Law
 - Gustafson-Barsis' Law
 - Karp-Flatt metric
 - Isoefficiency metric