
Performance Analysis

 Predict performance of parallel programs
 Understand barriers to higher performance
 General speedup formula
 Amdahl’s Law
 Gustafson-Barsis’ Law
 Karp-Flatt metric
 Isoefficiency metric



Speedup Formula

Speedup =
Sequential execution time
Parallel execution time

Execution Time Components:
Inherently sequential computations:  (n)
Potentially parallel computations: (n)
Communication operations: (n,p)



Speedup Expression

Given the components of the execution time, can 
develop a formula for the speedup that depends on 
the size of the problem, n, and the number of 
processors, p.

ψ (n,p )≤
σ (n)+ϕ(n)

σ (n)+ϕ(n)/ p+κ (n,p )



(n)/p



(n,p)



(n)/p + (n,p)



Speedup Plot

“elbowing out”



Efficiency

Efficiency =
Sequential execution time
Processors used × Parallel execution time
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Efficiency is a fraction:
0  (n,p)  1 

ε (n,p)≤
σ (n )+ϕ (n )

pσ (n)+ϕ(n )+pκ (n,p)

All terms > 0  (n,p) > 0

Denominator > numerator  (n,p) < 1



Amdahl’s Law

ψ (n,p )≤
σ (n)+ϕ(n)

σ (n)+ϕ(n)/ p+κ (n,p )

ψ (n,p )≤
σ (n)+ϕ(n)

σ (n)+ϕ(n)/ p

Let f = (n)/((n) + (n));  i.e., f  is the 
fraction of the code which is inherently sequential 

ψ≤
1

f+(1−f )/ p



Example 1

 95% of a program’s execution time occurs inside a 
loop that can be executed in parallel. What is the 
maximum speedup we should expect from a 
parallel version of the program executing on 8 
CPUs?

ψ≤
1

0.05+(1−0 .05)/8
≃5.9



Example 2

 20% of a program’s execution time is spent within 
inherently sequential code. What is the limit to the 
speedup achievable by a parallel version of the 
program?

1
0.2+(1−0.2)/ p

=
1

0.2
=5 ¿



Limitations of Amdahl’s Law

 Ignores (n,p) - overestimates speedup
 Assumes f constant, so underestimates speedup 

achievable 



Amdahl Effect

 Typically (n) and (n,p) have lower complexity than 
(n)/p

As n increases, (n)/p dominates (n) & (n,p)
 As n increases, speedup increases
 As n increases, sequential fraction f decreases.



Illustration of Amdahl Effect

n = 100

n = 1,000

n = 10,000
Speedup

Processors



Review of Amdahl’s Law

 Treats problem size as a constant
 Shows how execution time decreases as number of 

processors increases



Another Perspective - Gustafson-Barsis’s 
Law 
 We often use faster computers to solve larger 

problem instances
 Let’s treat time as a constant and allow problem 

size to increase with number of processors



Gustafson-Barsis’s Law

ψ (n,p )≤
σ (n )+ϕ (n)

σ (n )+ϕ(n)/ p

         Let Tp = (n)+(n)/p = 1 unit

         Let s be the fraction of time that a parallel program 
         spends executing the serial portion of the code.

s  = (n)/((n)+(n)/p)
        Then,

 = T1/Tp = T1 <= s + p*(1-s)      (the scaled speedup)



 Gustafson-Barsis’s Law (cont.)

Thus, sequential time would be p times the parallelized 
portion of the code plus the time for the sequential portion.

 <= s + p*(1-s)      (the scaled speedup)

Restated,

ψ≤p+(1− p)s

Thus, sequential time would be p times the parallel execution 
time minus (p-1) times the sequential portion of execution time.



Summary of applying Gustafson-Barsis’s 
Law
 Begin with parallel execution time and estimate 

the time spent in sequential portion.
 Predicts scaled speedup (Sp -  - same as T1)
 Estimate sequential execution time to solve same 

problem (s)
 Assumes that s remains fixed irrespective of how 

large is p - thus overestimates speedup.
 Problem size (s + p*(1-s)) is an increasing function 

of p



Example 1

 An application running on 10 processors spends 
3% of its time in serial code. What is the scaled 
speedup of the application?

ψ=10+(1−10)(0 .03)=10−0 .27=9.73

Execution on 1 CPU takes 10 times as long…

…except 9 do not have to execute serial code



Example 2

 What is the maximum fraction of a 
program’s parallel execution time that can 
be spent in serial code if it is to achieve a 
scaled speedup of 7 on 8 processors?

7=8+(1−8 ) s⇒ s≈0.14



The Karp-Flatt Metric

 Amdahl’s Law and Gustafson-Barsis’ Law 
ignore (n,p)

 They can overestimate speedup or scaled 
speedup

 Karp and Flatt proposed another metric



Experimentally Determined 
Serial Fraction

e=
σ (n )+κ (n,p )

σ (n )+ϕ(n )

Inherently serial component
of parallel computation +
processor communication and
synchronization overhead

Single processor execution time

e=
1 /ψ−1 / p

1−1 /p



Experimentally Determined 
Serial Fraction

 Takes into account parallel overhead
 Detects other sources of overhead or 

inefficiency ignored in speedup model
Process startup time
Process synchronization time
Imbalanced workload
Architectural overhead



Example 1

p 2 3 4 5 6 7

1.8 2.5 3.1 3.6 4.0 4.4

8

4.7

What is the primary reason for speedup of only 4.7 on 8 CPUs?

e 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Since e is constant, large serial fraction is the primary reason.



Example 2

p 2 3 4 5 6 7

1.9 2.6 3.2 3.7 4.1 4.5

8

4.7

What is the primary reason for speedup of only 4.7 on 8 CPUs?

e 0.070 0.075 0.080 0.085 0.090 0.095 0.100

Since e is steadily increasing, overhead is the primary reason.



Isoefficiency Metric

 Parallel system: parallel program executing 
on a parallel computer

 Scalability of a parallel system: measure of 
its ability to increase performance as 
number of processors increases

 A scalable system maintains efficiency as 
processors are added

 Isoefficiency: way to measure scalability



Isoefficiency Derivation Steps

 Begin with speedup formula
 Compute total amount of overhead
 Assume efficiency remains constant
 Determine relation between sequential 

execution time and overhead



Deriving Isoefficiency Relation

T o(n,p )=( p−1)σ (n)+pκ (n,p )

Determine overhead

Substitute overhead into speedup equation

ψ (n,p )≤
p(σ (n )+ϕ(n ))

σ (n )+ϕ(n)+T 0(n,p)

Substitute T(n,1) = (n) + (n). Assume efficiency is constant. 
Hence, T0/T1 should be a constant fraction.

T (n,1 )≥CT 0(n,p ) Isoefficiency Relation



Scalability Function

 Suppose isoefficiency relation is n  f(p)
 Let M(n) denote memory required for 

problem of size n
 M(f(p))/p shows how memory usage per 

processor must increase to maintain same 
efficiency

 We call M(f(p))/p the scalability function



Meaning of Scalability Function

 To maintain efficiency when increasing p, we must 
increase n

 Maximum problem size limited by available 
memory, which is linear in p

 Scalability function shows how memory usage per 
processor must grow to maintain efficiency

 Scalability function a constant means parallel 
system is perfectly scalable



Interpreting Scalability Function

Number of processors

M
em

ory needed per processor

Cplogp

Cp

Clogp

C

Memory Size

Can maintain
efficiency

Cannot maintain
efficiency



Example 1: Reduction

 Sequential algorithm complexity
T(n,1) = (n)

 Parallel algorithm
Computational complexity = (n/p)
Communication complexity = (log p)

 Parallel overhead
T0(n,p) = (p log p)



Reduction (continued)

 Isoefficiency relation: n  C p log p
 We ask: To maintain same level of 

efficiency, how must n increase when p 
increases?

 M(n) = n

 The system has good scalability

M (Cp log p )/ p=Cp log p / p=C log p



Example 2: Floyd’s Algorithm

 Sequential time complexity: (n3)
 Parallel computation time: (n3/p)
 Parallel communication time: (n2log p)
 Parallel overhead: T0(n,p) = (pn2log p)



Floyd’s Algorithm (continued)

 Isoefficiency relation
n3  C(p n3 log p)  n  C p log p

 M(n) = n2

 The parallel system has poor scalability

M (Cp log p )/ p=C2 p2 log 2 p /p=C 2 p log2 p



Summary (1/3)

 Performance terms
Speedup
Efficiency

 Model of speedup
Serial component
Parallel component
Communication component



Summary (2/3)

 What prevents linear speedup?
Serial operations
Communication operations
Process start-up
 Imbalanced workloads
Architectural limitations



Summary (3/3)

 Analyzing parallel performance
Amdahl’s Law
Gustafson-Barsis’ Law
Karp-Flatt metric
 Isoefficiency metric
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