
Performance Analysis

 Predict performance of parallel programs
 Understand barriers to higher performance
 General speedup formula
 Amdahl’s Law
 Gustafson-Barsis’ Law
 Karp-Flatt metric
 Isoefficiency metric

Speedup Formula

Speedup =
Sequential execution time
Parallel execution time

Execution Time Components:
Inherently sequential computations: (n)
Potentially parallel computations: (n)
Communication operations: (n,p)

Speedup Expression

Given the components of the execution time, can
develop a formula for the speedup that depends on
the size of the problem, n, and the number of
processors, p.

ψ (n,p)≤
σ (n)+ϕ(n)

σ (n)+ϕ(n)/ p+κ (n,p)

(n)/p

(n,p)

(n)/p + (n,p)

Speedup Plot

“elbowing out”

Efficiency

Efficiency =
Sequential execution time
Processors used × Parallel execution time

Efficiency =Speedup
Processors usedProcessors

Speedup
 Efficiency

timeexecution Parallel Processors

timeexecution Sequential
 Efficiency






Efficiency is a fraction:
0  (n,p)  1

ε (n,p)≤
σ (n)+ϕ (n)

pσ (n)+ϕ(n)+pκ (n,p)

All terms > 0  (n,p) > 0

Denominator > numerator  (n,p) < 1

Amdahl’s Law

ψ (n,p)≤
σ (n)+ϕ(n)

σ (n)+ϕ(n)/ p+κ (n,p)

ψ (n,p)≤
σ (n)+ϕ(n)

σ (n)+ϕ(n)/ p

Let f = (n)/((n) + (n)); i.e., f is the
fraction of the code which is inherently sequential

ψ≤
1

f+(1−f)/ p

Example 1

 95% of a program’s execution time occurs inside a
loop that can be executed in parallel. What is the
maximum speedup we should expect from a
parallel version of the program executing on 8
CPUs?

ψ≤
1

0.05+(1−0 .05)/8
≃5.9

Example 2

 20% of a program’s execution time is spent within
inherently sequential code. What is the limit to the
speedup achievable by a parallel version of the
program?

1
0.2+(1−0.2)/ p

=
1

0.2
=5 ¿

Limitations of Amdahl’s Law

 Ignores (n,p) - overestimates speedup
 Assumes f constant, so underestimates speedup

achievable

Amdahl Effect

 Typically (n) and (n,p) have lower complexity than
(n)/p

As n increases, (n)/p dominates (n) & (n,p)
 As n increases, speedup increases
 As n increases, sequential fraction f decreases.

Illustration of Amdahl Effect

n = 100

n = 1,000

n = 10,000
Speedup

Processors

Review of Amdahl’s Law

 Treats problem size as a constant
 Shows how execution time decreases as number of

processors increases

Another Perspective - Gustafson-Barsis’s
Law
 We often use faster computers to solve larger

problem instances
 Let’s treat time as a constant and allow problem

size to increase with number of processors

Gustafson-Barsis’s Law

ψ (n,p)≤
σ (n)+ϕ (n)

σ (n)+ϕ(n)/ p

 Let Tp = (n)+(n)/p = 1 unit

 Let s be the fraction of time that a parallel program
 spends executing the serial portion of the code.

s = (n)/((n)+(n)/p)
 Then,

 = T1/Tp = T1 <= s + p*(1-s) (the scaled speedup)

 Gustafson-Barsis’s Law (cont.)

Thus, sequential time would be p times the parallelized
portion of the code plus the time for the sequential portion.

 <= s + p*(1-s) (the scaled speedup)

Restated,

ψ≤p+(1− p)s

Thus, sequential time would be p times the parallel execution
time minus (p-1) times the sequential portion of execution time.

Summary of applying Gustafson-Barsis’s
Law
 Begin with parallel execution time and estimate

the time spent in sequential portion.
 Predicts scaled speedup (Sp -  - same as T1)
 Estimate sequential execution time to solve same

problem (s)
 Assumes that s remains fixed irrespective of how

large is p - thus overestimates speedup.
 Problem size (s + p*(1-s)) is an increasing function

of p

Example 1

 An application running on 10 processors spends
3% of its time in serial code. What is the scaled
speedup of the application?

ψ=10+(1−10)(0 .03)=10−0 .27=9.73

Execution on 1 CPU takes 10 times as long…

…except 9 do not have to execute serial code

Example 2

 What is the maximum fraction of a
program’s parallel execution time that can
be spent in serial code if it is to achieve a
scaled speedup of 7 on 8 processors?

7=8+(1−8) s⇒ s≈0.14

The Karp-Flatt Metric

 Amdahl’s Law and Gustafson-Barsis’ Law
ignore (n,p)

 They can overestimate speedup or scaled
speedup

 Karp and Flatt proposed another metric

Experimentally Determined
Serial Fraction

e=
σ (n)+κ (n,p)

σ (n)+ϕ(n)

Inherently serial component
of parallel computation +
processor communication and
synchronization overhead

Single processor execution time

e=
1 /ψ−1 / p

1−1 /p

Experimentally Determined
Serial Fraction

 Takes into account parallel overhead
 Detects other sources of overhead or

inefficiency ignored in speedup model
Process startup time
Process synchronization time
Imbalanced workload
Architectural overhead

Example 1

p 2 3 4 5 6 7

1.8 2.5 3.1 3.6 4.0 4.4

8

4.7

What is the primary reason for speedup of only 4.7 on 8 CPUs?

e 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Since e is constant, large serial fraction is the primary reason.

Example 2

p 2 3 4 5 6 7

1.9 2.6 3.2 3.7 4.1 4.5

8

4.7

What is the primary reason for speedup of only 4.7 on 8 CPUs?

e 0.070 0.075 0.080 0.085 0.090 0.095 0.100

Since e is steadily increasing, overhead is the primary reason.

Isoefficiency Metric

 Parallel system: parallel program executing
on a parallel computer

 Scalability of a parallel system: measure of
its ability to increase performance as
number of processors increases

 A scalable system maintains efficiency as
processors are added

 Isoefficiency: way to measure scalability

Isoefficiency Derivation Steps

 Begin with speedup formula
 Compute total amount of overhead
 Assume efficiency remains constant
 Determine relation between sequential

execution time and overhead

Deriving Isoefficiency Relation

T o(n,p)=(p−1)σ (n)+pκ (n,p)

Determine overhead

Substitute overhead into speedup equation

ψ (n,p)≤
p(σ (n)+ϕ(n))

σ (n)+ϕ(n)+T 0(n,p)

Substitute T(n,1) = (n) + (n). Assume efficiency is constant.
Hence, T0/T1 should be a constant fraction.

T (n,1)≥CT 0(n,p) Isoefficiency Relation

Scalability Function

 Suppose isoefficiency relation is n  f(p)
 Let M(n) denote memory required for

problem of size n
 M(f(p))/p shows how memory usage per

processor must increase to maintain same
efficiency

 We call M(f(p))/p the scalability function

Meaning of Scalability Function

 To maintain efficiency when increasing p, we must
increase n

 Maximum problem size limited by available
memory, which is linear in p

 Scalability function shows how memory usage per
processor must grow to maintain efficiency

 Scalability function a constant means parallel
system is perfectly scalable

Interpreting Scalability Function

Number of processors

M
em

ory needed per processor

Cplogp

Cp

Clogp

C

Memory Size

Can maintain
efficiency

Cannot maintain
efficiency

Example 1: Reduction

 Sequential algorithm complexity
T(n,1) = (n)

 Parallel algorithm
Computational complexity = (n/p)
Communication complexity = (log p)

 Parallel overhead
T0(n,p) = (p log p)

Reduction (continued)

 Isoefficiency relation: n  C p log p
 We ask: To maintain same level of

efficiency, how must n increase when p
increases?

 M(n) = n

 The system has good scalability

M (Cp log p)/ p=Cp log p / p=C log p

Example 2: Floyd’s Algorithm

 Sequential time complexity: (n3)
 Parallel computation time: (n3/p)
 Parallel communication time: (n2log p)
 Parallel overhead: T0(n,p) = (pn2log p)

Floyd’s Algorithm (continued)

 Isoefficiency relation
n3  C(p n3 log p)  n  C p log p

 M(n) = n2

 The parallel system has poor scalability

M (Cp log p)/ p=C2 p2 log 2 p /p=C 2 p log2 p

Summary (1/3)

 Performance terms
Speedup
Efficiency

 Model of speedup
Serial component
Parallel component
Communication component

Summary (2/3)

 What prevents linear speedup?
Serial operations
Communication operations
Process start-up
 Imbalanced workloads
Architectural limitations

Summary (3/3)

 Analyzing parallel performance
Amdahl’s Law
Gustafson-Barsis’ Law
Karp-Flatt metric
 Isoefficiency metric

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

