

OpenMP

Shared-memory Programming
Using OpenMP compiler directives

Outline

● OpenMP
● Shared-memory model
● Parallel for loops
● Declaring private variables
● Critical sections
● Reductions
● Performance improvements
● More general data parallelism
● Functional parallelism

What is OpenMP

OpenMP: An application programming interface
(API) for parallel programming on multiprocessors
● Compiler directives
● Library of support functions
OpenMP works in conjunction with C, C++ or
Fortran
OpenMP uses a portable, scalable model that
gives programmers a simple and flexible interface
for developing parallel applications.

Shared memory model

● We know from using pthreads that processors interact and
synchronize with each other through shared variables.

P r o c e s s o r P r o c e s s o r P r o c e s s o r P r o c e s s o r

M e m o r y

Fork/Join Parallelism

● Initially only master thread is active
● Master thread executes sequential code
● Fork: Master thread creates or awakens

additional threads to execute parallel code
● Join: At end of parallel code created threads die

or are suspended

Fork/join parallelism (cont.)

T
im

e

f o r k

j o i n

M a s t e r T h r e a d

f o r k

j o i n

O t h e r t h r e a d s

Incremental Parallelization

● Start with a serial program that is organized to perform its
analysis using a looping construct

● Execute and profile the sequential program
● Incremental parallelization: process of converting a sequential

program to a parallel program a little bit (one loop) at a time
● Stop when further effort not warranted – no increase in speed

or efficiency is observed
● The resulting parallel shared-memory program may only have

a single parallel loop

Pragmas

● Pragma: a compiler directive in C or C++
● Stands for “pragmatic information”
● A way for the programmer to communicate with the compiler
● Compiler free to ignore pragmas

Syntax for an OpenMP pragma:

#pragma omp <rest of pragma>

 {block}

There is an implicit barrier at the end of the parallel block.

Parallelizing a for loop

Format:
//Insert a compiler directive before the loop
#pragma omp parallel for
 for (i = 0; i < N; i++)
 a[i] = b[i] + c[i];

The compiler must be able to verify the run-time system will
have the information it needs to schedule the loop iterations
using a group of threads.

Different versions of a for loop can be parallelized

)

indexindex

indexindex

indexindex

index
index

index

index
index

index

;index;index(for























































































inc

inc

inc

inc
incendstart

Review of pthread properties

● Every thread has its own execution context
● Execution context: address space containing all of the

local variables a thread may access
● Contents of execution context:

– static variables
– dynamically allocated data structures in the heap
– variables on the run-time stack
– additional run-time stack for functions invoked by

the thread

Shared vs local (private) variables

● Shared variable: has the same address in the execution
context of every thread

● Local (private) variable: has a unique address in the
execution context of every thread

● A thread cannot access the local variables of another
thread

Threads in OpenMP have the same definition of
shared and locale variables as pthreads

i n t m a i n (i n t a r g c , c h a r * a r g v [])
{

i n t b [3] ;
 c h a r * c p t r ;

i n t i ;

c p t r = m a l l o c (1) ;
p r a g m a o m p p a r a l l e l f o r

f o r (i = 0 ; i < 3 ; i + +)
 b [i] = i ;

H e a p

S t a c k

c p t rb i

ii

M a s t e r T h r e a d
 (T h r e a d 0)

T h r e a d 1

Useful Openmp functions

1. A function that returns number of physical processors
available for use by the parallel program.

int omp_get_num_procs (void)

 2. A function that uses its parameter value to set the
number of active threads in parallel sections of code.

May be called at multiple points in a program

void omp_set_num_threads (int t)

3. A function that returns how many threads are currently
in use:

int omp_get_num_threads (void)

4. Find out the current thread ID,
int omp_get_thread_num (void)

The master thread is 0.

How is the number of threads specified?
● A clause after the parallel pragma
● The function omp_set_num_threads()
● An environmental variable, OMP_NUM_THREADS

Why are private variables needed

for (i = 0; i < BLOCK_SIZE(id,p,n); i++)
 for (j = 0; j < n; j++)
 a[i][j] = MIN(a[i][j],a[i][k]+tmp);

● Either loop could be executed in parallel

● Making the outer loop parallel reduces the number of
forks/joins

● Each thread is given its own private copy of variable j
so there is no confusion about which thread is doing a
calculation

How to declare a private variable

A clause is an optional, additional component to a
pragma

The private clause directs the compiler to make one or
more variables private

private (<variable list>)

#pragma omp parallel for private(j)#pragma omp parallel for private(j)
for (i = 0; i < BLOCK_SIZE(id,p,n); i++)for (i = 0; i < BLOCK_SIZE(id,p,n); i++)
 for (j = 0; j < n; j++)for (j = 0; j < n; j++)
 a[i][j] = MIN(a[i][j],a[i][k]+tmp);a[i][j] = MIN(a[i][j],a[i][k]+tmp);

Specialized clauses: firstprivate clause

● The firstprivate clause is used to create private
variables having initial values identical to the variable
controlled by the master thread as the loop is entered

● Variables are initialized once per thread, not once per
loop iteration

● If a thread modifies a variable’s value in an iteration,
subsequent iterations will get the modified value

Lastprivate clause

In a sequential calculation, the last iteration
occurs before the loop is exited. A for loop
variable will be given its last value before the
condition is tested.

The lastprivate clause is used to copy back
the value of a private variable in the thread that
executes the sequentially last iteration to the
master thread’s copy of a variable.

Reductions

● Reductions, combining many values to a single value,
are so common that OpenMP provides support for them

● A reduction clause can be added to the parallel for
pragma

● Both the reduction operation and the reduction variable
must be specified

● OpenMP takes care of storing partial results in private
variables and combining partial results after the loop

The reduction clause

The reduction clause has this syntax:

reduction (<op> :<variable>)

Possible 0perators
● + Sum
● * Product
● & Bitwise and
● | Bitwise or
● ^ Bitwise exclusive or
● && Logical and
● || Logical or

Example of a reduction

C program segment to compute  using the rectangle
rule

double area, pi, x;
int i, n;

...
area = 0.0;
for (i = 0; i < n; i++) {
 x += (i+0.5)/n;
 area += 4.0/(1.0 + x*x);
}
pi = area / n;

Insert reduction clause

double area, pi, x;
int i, n;

...
area = 0.0;
#pragma omp parallel for private(x) reduction(+:area)
for (i = 0; i < n; i++) {
 x += (i+0.5)/n;
 area += 4.0/(1.0 + x*x);
}
pi = area / n;

Synchronization and critical sections

A race condition is one in which one thread may
“race ahead” of another and not see the change
to shared variable or access a shared resource
inappropriately:

T h r e a d A T h r e a d BV a l u e o f a r e a

1 1 . 6 6 7
+ 3 . 7 6 5

+ 3 . 5 6 3

1 1 . 6 6 7

1 5 . 4 3 2

1 5 . 2 3 0

In the calculation of 

A race condition may occur in which one
process may “race ahead” of another and not
see its change to shared variable area

11.667area

area += 4.0/(1.0 + x*x)

Thread A Thread B

15.432

11.66711.66715.432 15.230

15.230 Answer should be 18.995

The critical pragma

Critical section: a portion of code that only one thread at
a time may execute

A critical section is identified by putting the pragma

#pragma omp critical

in front of a block of C code

Correct, But Inefficient, Code

double area, pi, x;
int i, n;

...
area = 0.0;
#pragma omp parallel for private(x) reduction(+:area)
for (i = 0; i < n; i++) {
 x += (i+0.5)/n;
#pragma omp critical
 area += 4.0/(1.0 + x*x);
}
pi = area / n;

Sources of inefficiency

● Update to area inside a critical section

● Only one thread at a time may execute the statement;
i.e., it is sequential code

● Time to execute statement significant part of loop

● By Amdahl’s Law we know speedup will be severely
constrained

Performance Improvements
● Too many fork/joins can lower performance
● Inverting loops may help performance if the parallelism

is in the inner loop
● After inversion, the outer loop can be made parallel
● Inversion does not significantly lower cache hit rate
● If a loop has too few iterations, fork/join overhead is

greater than time savings from parallel execution
The if clause instructs compiler to insert code that
determines at run-time whether loop should be executed
in parallel; e.g.,

#pragma omp parallel for if(n > 5000)

Use scheduling to improve performance

The schedule clause can be used to specify how the
iterations of a loop should be allocated to threads.
Why? There may be an imbalance in the workload per
thread:

for (i = 0; i < n; i++)
 for (j = i; j < n; j++)

a[i][j] = somefunc(i,);

The imbalance:
i = 0, j ranges from 0 to n-1
i = 1, j ranges from 1 to n-1
i = n-2, j ranges from n-2 to n-1

Static versus dynamic scheduling

Static scheduling: all iterations allocated to threads
before any iterations executed.
● Low overhead
● May exhibit high workload imbalance

Dynamic scheduling: only some iterations allocated to
threads at the beginning of the loop’s execution.
Remaining iterations allocated to threads that complete
their assigned iterations.
● Higher overhead
● Can reduce workload imbalance

Granularity in parallel programming - chunks

A chunk is a contiguous range of iterations of a loop –
e.g. a group of 50 iterations

● Increasing chunk size reduces overhead and but may
increase cache hit rate

● Decreasing chunk size allows finer balancing of
workloads per thread

The schedule clause

Syntax of schedule clause

schedule (<type>[,<chunk>])
Schedule type required, chunk size optional

Allowable schedule types
● static: static allocation
● dynamic: dynamic allocation
● guided: guided self-scheduling
● runtime: type chosen at run-time based on value of

environment variable OMP_SCHEDULE

Scheduling options

● schedule(static): block allocation of about n/numthreads
contiguous iterations to each thread

● schedule(static,m): interleaved allocation of chunks of
size m to threads

● schedule(dynamic): dynamic one-at-a-time allocation of
iterations to threads

● schedule(dynamic,m): dynamic allocation of m
iterations at a time to threads

Scheduling options (cont.)

● schedule(guided, m): dynamic allocation of chunks to
tasks using a guided, self-scheduling algorithm. Initial
chunks are bigger, later chunks are smaller, minimum
chunk size is m.

● schedule(guided): guided self-scheduling with minimum
chunk size 1

● schedule(runtime): schedule chosen at run-time based
on value of OMP_SCHEDULE; Linux example:

setenv OMP_SCHEDULE “static,1”

Other forms of data parallelism

Focus has been on the parallelization of for loops

Other opportunities for data parallelism exist:

● processing items on a “to do” list

● for loop + additional code outside of loop

Handling a list of tasks

● Every thread takes a next task from the list and completes it.

● The threads continue to remove tasks from the list until there
are no more tasks.

● Must ensure no two threads take the same task from the list,
e.g., a critical section can be declared.

The task list represented as a linked list

H e a p

j o b _ p t r

S h a r e d
V a r i a b l e s

M a s t e r T h r e a d T h r e a d 1

t a s k _ p t r t a s k _ p t r

A sequential code version of the task list

int main (int argc, char *argv[])
{
 struct job_struct *job_ptr;
 struct task_struct *task_ptr;

 ...
 task_ptr = get_next_task (&job_ptr);
 while (task_ptr != NULL) {
 complete_task (task_ptr);
 task_ptr = get_next_task (&job_ptr);
 }
 ...
}

get_next_task() function

char *get_next_task(structjob_struct**job_ptr)
{
 struct task_struct *answer;

 if (*job_ptr == NULL) answer = NULL;
 else {
 answer = (*job_ptr)->task;
 *job_ptr = (*job_ptr)->next;
 }
 return answer;
}

The parallel pragma

The parallel pragma precedes a block of
code that should be executed by all of the
threads.

#pragma omp parallel private(task_ptr)
{
 task_ptr = get_next_task (&job_ptr);
 while (task_ptr != NULL) {
 complete_task (task_ptr);
 task_ptr = get_next_task (&job_ptr);
 }
}

The critical section is inserted in the function
get_next_task()

char *get_next_task(struct job_struct**job_ptr)
{
 struct task_struct *answer;
#pragma omp critical
 {
 if (*job_ptr == NULL) answer = NULL;
 else {
 answer = (*job_ptr)->task;
 *job_ptr = (*job_ptr)->next;
 }
 }
 return answer;
}

The single pragma

Suppose we only want to see the output of a calculation
once rather than printed by every thread.

The single pragma indicates to the compiler that only
a single thread should execute the block of code the
pragma precedes.

Syntax:

#pragma omp single

Use of the single pragma
#pragma omp parallel private(i,j)
for (i = 0; i < m; i++) {
 low = a[i];
 high = b[i];
 if (low > high) {
#pragma omp single
 printf ("low > high at (%d)\n", i);
 }
#pragma omp for
 for (j = low; j < high; j++)
 c[j] = (c[j] - a[i])/b[i];
}

Note, low and high are not private variables.

The nowait clause

● The compiler puts a barrier synchronization at end of
every parallel for statement, block or section.

● The nowait clause indicates that the barrier can be
eliminated. That is, the threads can terminate or move
ahead independently.

● In the previous example, the barrier was needed if a
thread changes low or high which may affect the
behavior of another thread.

● If low and high were private variables, then it would be
okay to let threads move ahead, which could reduce
execution time.

Use of the nowait clause

#pragma omp parallel private(i,j,low,high)
for (i = 0; i < m; i++) {
 low = a[i];
 high = b[i];
 if (low > high) {
#pragma omp single
 printf ("low > high at (%d)\n", i);
 }
#pragma omp for nowait
 for (j = low; j < high; j++)
 c[j] = (c[j] - a[i])/b[i];
}

Functional parallelism in OpenMP

 v = alpha();

 w = beta();

 x = gamma(v, w);

 y = delta();

printf("%6.2f\n",epsilon(x,y));

Functions alpha(), beta(), and
delta() may be executed in
parallel.

a l p h a b e t a

g a m m a d e l t a

e p s i l o n

Working sharing using the parallel sections
pragma

The parallel sections pragma allows a task to be
shared be shared among a pool of threads.
It precedes a block of k blocks of code that may
be executed concurrently by k threads
Syntax:

#pragma omp parallel sections

The section pragma

● The parallel sections pragma is followed by multiple
blocks of code

● Each block of code is preceded by the section pragma

● It may be omitted for the first parallel section after the
parallel sections pragma

Syntax:

#pragma omp section

Usage of the parallel sections and section
pragmas

#pragma omp parallel sections
 {
#pragma omp section /* Optional */
 v = alpha();
#pragma omp section
 w = beta();
#pragma omp section
 y = delta();
 }
 x = gamma(v, w);
 printf ("%6.2f\n", epsilon(x,y));

Another approach to work-sharing in
OpenMP

Execute the functions
alpha() and beta() in
parallel.

Execute gamma() and
delta() in parallel.

Only epsilon() has
dependencies that require
waiting for gamma() and
delta().

a l p h a b e t a

g a m m a d e l t a

e p s i l o n

The sections pragma

The sections pragma is used separately from the parallel
pragma.
● It appears inside a parallel block of code
● Used within a parallel pragma block, it has the same

meaning as the parallel sections pragma
● If multiple sections pragmas are used inside one

parallel block, the fork/join costs may be reduced.

Usage of the sections pragma

#pragma omp parallel
 {
 #pragma omp sections
 {
 v = alpha();
 #pragma omp section
 w = beta();
 }
 #pragma omp sections
 {
 x = gamma(v, w);
 #pragma omp section
 y = delta();
 }
 }
 printf ("%6.2f\n", epsilon(x,y));

Barriers in OpenMP

The barrier clause causes execution to wait for all
threads to finish the work of the loop, sections, or region
before any go on to execute additional work.

Once all threads have reached the barrier, they can
proceed. The form is given by:

#pragma omp barrier

This statement must be within another parallel pragma.

Example of the use of a barrier
#pragma omp parallel shared(x, y, z) num_threads(2)
 {

 int tid = omp_get_thread_num();
 if (tid == 0)

 y= fn1(tid);
 else

 z = fn2(tid);
 #pragma omp barrier
 #pragma omp for
 for (j = 0; j < 100; j++)
 x[j] = y + z + fn1(j) + fn2(j);
 }

The code is executed by two threads. Thread 0 calculates
the value assigned to the variable y; the other thread
assigns a value to the variable z. Both y and z are
needed in the for loop; hence, two data dependences
exist. The barrier is needed to ensure that the values
of y and z have been calculated before the loop is
executed.

The atomic clause

With the atomic clause, the memory update (write, or
read-modify-write) in the next instruction will be
performed atomically – no interleaved instructions. It
does not make the entire statement atomic; only the
memory update is atomic.

#pragma omp atomic
expression or statement

Possible forms: x op= expression
 x++, x--
 ++x, --x

Atomic vs critical clauses

A critical section is completely general; it can surround any
arbitrary block of code.
● It incurs significant overhead every time a thread enters and

exits the critical section
● The critical section also serializes the code.
● There is only one lock for all unnamed critical sections

An atomic operation has much lower overhead.
● It relies on the hardware providing the atomic increment

operation
● No lock/unlock needed on entering/exiting the line of code
● One thread being in an atomic operation doesn't block any other

atomic operations.
● The calculation is still serialized.

Timing omp code blocks

A function is available that returns the elapsed wall clock time
in seconds.

double omp_get_wtime(void);

The time is measured per thread; however, no guarantee can
be made that two distinct threads measure the same time.

Time is measured from some "time in the past", which is an
arbitrary time guaranteed not to change during the execution
of the program.

Timing omp code blocks (cont.)

The usage is to call the function twice and
subtract the two values:

double start;
double end;
start = omp_get_wtime();

//... work to be timed ...
end = omp_get_wtime();
printf("Work took %f sec. time.\n", end-start);

The flush clause

The flush clause causes all threads in a parallel region to
have a consistent view of a specific or all shared
variables in memory.

#pragma omp flush (variable list)
^^ no list - all shared variables become consistent

● Current read/write operations on variables are allowed to
complete.

● Values are written back to memory
● New memory operations are postponed

This clause must appear within a compound statement.

The threadprivate clause

Some variables used in parallel blocks need to be private
to a specific thread – no sharing.

#pragma omp threadprivate (variable list)

● The variable will persist from one parallel region to the
next – it assumes a fixed number of threads.

● It must be initialized before it is declared private.
● The directive must come before any parallel directive.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Correct, But Inefficient, Code
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

