Mpi and the Sieve of Eratosthenes

Outline:

» Sequential algorithm

» Sources of parallelism

* Data decomposition options

 Parallel algorithm development, analysis
 MPI program

* Benchmarking

» Optimizations

Sequential algorithm for finding primes

1. Create list of unmarked natural numbers 2, 3, ..., n
2. k2

3. Repeat
(a) Mark all multiples of k between k2 and n
(b) k < smallest unmarked number > k until k2> n

4, The unmarked numbers are primes

Representation of algorithm

213 415/6/7 8]910[11[12[13/14/15 16
17| 18]19| 20|21 22|28| 24| 25| 26|27 28 |29| 30|31
32/33|34/35|36|37,38/ 39|40 |41 42 |43 44/45 46

47,4849 50 51 52 53154 55 56 57,58 59 60 61

Complexity: O(n In In n)

ldentify what can be parallelized

Domain decomposition — what is the domain?
Represent the data as an array of integers.

* Divide data into pieces

» Associate computational steps with data
One primitive task per array element
The tasks in 3(a) and 3(b) need to be analyzed

First, consider the tasks in 3(a)

Mark all multiples of k between k2 and n

In pseudocode for the sequential algorithm, this can be
written as:

for all jwhere k2 <j < ndo
If mod k = 0 then
mark j (it Is not a prime)
endif

endfor

In the parallel case, | is an element of an array and represents
a task

And then, consider the tasks in 3(b)

Find smallest unmarked number > k

This step ignores the marked array elements, so
the number of tasks has been reduced. Can be
accomplished by:

 Perform a reduction to find the smallest
unmarked number > k

* Broadcast the result to all processes

Agglomeration of the tasks

Consolidate tasks — each iteration of the sieve
algorithm reduces the number of elements to consider.

Reduce communication cost — current value of k needs
to be shared with all processes.

Balance computations among processes — as the
calculation proceeds, less tasks remain with smaller
Indices.

How to divide up the data

Interleaved (cyclic) — if n tasks and p processes, a
process is given, tasks are assigned “round robin”

« Easy to determine “owner” of each index

* Leads to load imbalance for this problem

Block decomposition — each process Is given a
contiguous block of tasks

 Balances loads

* More complicated to determine owner if n not a
multiple of p

Load balance problem in interleaved division
of data

Consider p =4, so
0, has tasks with values 2, 6, 10, 14, 18, ...

0, has tasks with values 3, 7, 11, 15, 19, ...
p, has values 4, 8, 12, 16, 20, ...
p, has values 5, 9, 13, 17, 21, ...

Processes p, and p, have no more tasks after the
case k = 2.

How does block decomposition work?

Want to balance workload when n, the number of
tasks, Is not a multiple of p, the number of processes

Each process gets either ceil(n/p) or floor(n/p)
elements

Seek simple expressions to identify task and process
* Find low, high indices given a process number
* Find the process given an array index

First approach to block decomposition

Letr=nmodp

If r = 0, all blocks have same size and it is
straighforward to find which array elements belong to

which process
Else

* First r blocks have size ceil(n/p)
 Remaining p-r blocks have size floor(n/p)

Whenr!=0

First element controlled by process i:
| = I*floor(n/p) + min(i,r)

Last element controlled by process i:
] = (I+1)*floor(n/p) + min(i+1,r) - 1

Process, g, controlling element j:

g = min(floor(j/(floor(n/p)+1),floor(j-r)/floor(n/p)))

Some examples using the first approach

17 elements divided among 7 processes

17 elements divided among 5 processes

17 elements divided among 3 processes

Second approach — scatter larger blocks
among smaller blocks

17 elements divided among 7 processes

17 elements divided among 5 processes

17 elements divided among 3 processes

Assigning indices to processes in second
approach

First element controlled by process i
] = floor(i*n/p)

Last element controlled by process i:
| = floor((i+1)*n/p)-1

Process controlling element j:

g = ceil((p*(J+1)-1)/n)

Macros to program the second approach
#define BLOCK_LOW(id,p,n) ((1)*(n)/(p))
#define BLOCK_HIGH(id,p,n) (BLOCK LOW((id)+1,p,n)-1)

#define BLOCK_SIZE(id,p,n) \
(BLOCK_LOW((id)+1)-BLOCK_LOW(id))

#define BLOCK_OWNER(index,p,n) (((p)*(index)+1)-1)/(n))

Each process has local variables that
correspond to sequential variables

Lo 1
N
G 01
L0 1
HE
G 5 6
L0 12
NN

LO 1 2

G 1011 12

Comparing the indices in the sequential
code with the parallel code

Sequential program
for (1 = 0; 1 < n; i++) {

Local index i on this process...

}

Parallel program

size = FLOCK_SIZE (id,p,n);

for (i = 0; i < size; i++) {
gL = 1 + BLOCK_LOW(1d,p,n);

}

takes place of sequential program’s index i

The method of decomposition affects the
Implementation

The largest prime used in the algorithm to remove
multiples is vn

The first process has floor(n/p) elements
ne algorithm finds all possible primes if p < Vn

ne first process always broadcasts the next sieving
prime

No reduction step is needed

Fast marking of rejected elements

Block decomposition allows same marking as sequential
algorithm:

mark elements j, j + k, |+ 2k, |+ 3Kk, ...
iInstead of

for all j in block
If ymod Kk =0thenmark; /ltis nota prime

Parallel Algorithm Development

1. Create list of unmarked natural numbers 2, 3, ..., n

2.k 2 Each process creates its share of list
Each process does this

3. Repeat Each process marks its share of list

(a) Mark all multiples of k between k? and n

(o) K < smallest unmarked number > k Process 0 only

(c) Process 0 broadcasts k to rest of processes until k> > n

4. The unmarked numbers are primes

5. Reduction to determine number of primes

Task/Channel Graph

1

T) (o)

How to broadcast data from one process to
another

MPI_Bcast (&k, 1, MPI_INT, O, MPI_COMM_WORLD);

int MPI_Bcast (
void *buffer, /* Addr of 1st element */

int count, /* # elements to broadcast */
MPI_Datatype datatype, /* Type of elements */
int root, /* ID of root process */

MPI_Comm comm) /* Communicator */

Some Improvements to the Algorithm

1. Delete even integers
e Cuts number of computations in half
* Frees storage for larger values of n

2. Each process finds own sieving primes
« Replicating computation of primes to vn

* Eliminates broadcast step

3. Reorganize loops

 Exchange the do-while and the for loop
* |Increases cache usage

Reorganizing the code by inverting the loops

3-99: multiples of 3

3-99: multiples of 5

3-99: multiples of 7

3-17: multiples of 3

19-33: multiples of 3, 5
35-49: multiples of 3, 5, 7
51-65: multiples of 3, 5, 7
67-81: multiples of 3, 5, 7
83-97: multiples of 3, 5, 7

99: multiples of 3, 5, 7

(@)

(b

3786°
096

(a) Lower cache hit rate
(usage) of the original
arrangement of the loops

(b) Higher cache hit rate
when the loops are
exchanged.

Summary of content

 Sieve of Eratosthenes: parallel design uses
domain decomposition

 Compared two block distributions
- Chose one with simpler formulas
e Introduced MPI_Bcast () for communication

» Optimizations reveal importance of maximizing
single-processor performance when using MPI

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

