

Floyd's Algorithm

A method to find the shortest distance between
two points when multiple paths are possible.

Can be represented as a directed graph which
must be traversed in a particular direction.

The weights of the edges represent the “distance”
between the vertices.

The graph can be represented as a
numerical adjacency matrix.

A

E

B

C

D

4

6

1 35

3

1

2

0 6 3 6

4 0 7 10

12 6 0 3

7 3 10 0

9 5 12 2

A

B

C

D

E

A B C D

4

8

1

11

0

E

Resulting Adjacency Matrix Containing Distances

Advantages to using a matrix

● The adjacency matrix a[i,j] initially holds the
lengths between each pair of vertices

● Computationally, there is constant time access
to each element

● When the analysis is complete, the shortest
path distance can be stored in the matrix – this
keeps memory usage the same

The sequential algorithm

n is the number of vertices

for k  0 to n-1
for i  0 to n-1

for j  0 to n-1
a[i,j]  min (a[i,j], a[i,k] + a[k,j])

endfor
endfor

endfor

n3 algorithm

Pictorial representation of algorithm

i

k

j

Shortest path from i to k
 through 0, 1, …, k-1

Shortest path from k to j
 through 0, 1, …, k-1

Shortest path from i to j
 through 0, 1, …, k-1

Computed
in previous
iterations

Designing the parallel algorithm

Domain or functional decomposition?
● Look at pseudocode
● Same assignment statement executed n3 times
● No functional parallelism

Domain decomposition: divide matrix a into its n2 elements
● Each a[i,j] represents a task – need to find a shortest

distance.
● However, to find the distance need to look at a[i,k] and

a[k,j] for all k

Communication

● Every task in column m needs the value of a[k,m]

● Every task in row m needs the value of a[m,k]

● Can this value be broadcast?

Let k control the outer loop of the algorithm:

 a[i,k] = min(a[i,k],a[i,k]+a[k,k]←0
 a[k,j] = min(a[k,j], a[k,k]+a[k,j]
 ↑

 0
 A broadcast is possible for specific values of k

Communication (cont.)

Primitive tasks
Updating
a[3,4] when
k = 1

Iteration k:
every task
in row k
broadcasts
its value w/in
task column

Iteration k:
every task
in column k
broadcasts
its value w/in
task row

Agglomeration and Mapping

Number of tasks: static, depends on value of n
Communication among tasks: structured
Computation time per task: constant
Strategy:

● Agglomerate tasks to minimize communication
● Create one combined task per MPI process

Consider two data decompositions

Rowwise block striped Columnwise block striped

Comparing the two decompositions

Columnwise block striped
Broadcast within columns eliminated

Rowwise block striped
Broadcast within rows eliminated
Reading matrix from file simpler because elements

in C/C++ matrices stored in row major order
Choose rowwise block striped decomposition

How to input a large adjacency matrix

Assume that the matrix is stored row by row in a file.

1) Each process reads its own row (or rows) of initial
data. The process must seek the correct location in
the shared file.

2) A master process reads all the rows and sends the
data to the appropriate process.

Method 2) minimizes memory usage because only one
process needs to read and send the data.

Eliminates the seek in method 1).

File Input – reading row by row

File

How are rows distributed?

 n = size of the matrix, p = number of processes

Let process i have rows:
floor(i*n/p) to floor((i+1)*n/p)-1

If i = p-1, number of rows = ceil(n/p)

ceil(n/p) is the maximum number of rows any process will
have, so
● process p-1 can read the rows and distribute them.
● It reads its own rows last.

Point-to-point Communication is required to
send and receive the elements of a

● Involves a pair of processes
● One process sends a message
● Other process receives the message

Function MPI_Send() – a blocking MPI
function

int MPI_Send (

 void *message //memory location,

 int count //# of items to send,

 MPI_Datatype datatype,

 int dest //rank of receiving process,

 int tag //message ID,

 MPI_Comm comm

)

Return from MPI_Send()

● Function blocks until message buffer free
● Message buffer is free when

- Message copied to system buffer, or

- Message transmitted
● Typical scenario

- Message copied to system buffer

- Transmission overlaps computation

Function MPI_Recv() - returns when the expected
message is available in the local buffer
int MPI_Recv (

 void *message//data stored here,

 int count//maximum amount of memory,

 MPI_Datatype datatype,

 int source//ranking of sendor,

 int tag//message ID,

 MPI_Comm comm,

 MPI_Status *status//was it successful

)

Return from MPI_Recv()

● Function blocks until message in buffer
● If message never arrives, function never returns
● MPI_Status is a structure guaranteed to have a

field MPI_ERROR
● If the message size is larger than allocated

memory, an overflow error occurs
● If the message size is less than count, it is

stored at the beginning of the allocated
memory.

Relationship of Send/Receive in the code

…
if (ID == j) {
 …
 Receive from i
 …
}
…
if (ID == i) {
 …
 Send to j
 …
}
…

Receive is before Send.
Why does this work?

Inside MPI_Send() and MPI_Recv()

Sending Process Receiving Process

Program
Memory

System
Buffer

System
Buffer

Program
Memory

MPI_Send() MPI_Recv()

Deadlock is possible in MPI

Deadlock: process waiting for a condition that will
never become true

Easy to write send/receive code that deadlocks
 Two processes: both receive before send
 Send tag doesn’t match receive tag
 Process sends message to wrong destination

process

Dynamic 1-D Array Creation -
 Using malloc() is straightforward

A

Heap

Run-time Stack

Dynamic 2-D Array Creation – matrices are stored
in row major order
 B(n,m) – B is a pointer to a pointer

Heap

Run-time Stack
Bstorage B

Programming 2-D array allocation

 int **B, *Bstorage;
 Bstorage = (int*)malloc(m*n*sizeof(int));
 B = (int**)malloc(m*sizeof(int*));

 for(i = 0; i < m; i++)
 B[i] = &Bstorage[i*n]

Parallel algorithm
void compute_shortest_paths (int id, int p, dtype **a, int n)
{
 int i, j, k;
 int offset; /* Local index of broadcast row */
 int root; /* Process controlling row to be bcast */
 int* tmp; /* Holds the broadcast row */

 tmp = (dtype *) malloc (n * sizeof(dtype));
 for (k = 0; k < n; k++) {
 root = BLOCK_OWNER(k,p,n);
 if (root == id) {
 offset = k - BLOCK_LOW(id,p,n);
 for (j = 0; j < n; j++)
 tmp[j] = a[offset][j];
 }
 MPI_Bcast (tmp, n, MPI_TYPE, root, MPI_COMM_WORLD);
 for (i = 0; i < BLOCK_SIZE(id,p,n); i++)
 for (j = 0; j < n; j++)
 a[i][j] = MIN(a[i][j],a[i][k]+tmp[j]);
 }
 free (tmp);
}

Computation/communication overlap

Computational Complexity

● Innermost loop has complexity (n)

 for (j = 0; j < n; j++)
● Middle loop executed at most ceil(n/p) times

 for (i = 0; i < BLOCK_SIZE(id,p,n); i++)
● Outer loop executed n times

 for (k = 0; k < n; k++)
● Overall complexity (n3/p)

Communication complexity

● No communication in inner loop

● No communication in middle loop

● Broadcast in outer loop — complexity is (n log p)

● Overall complexity (n2 log p)

Summary

● Two matrix decompositions
 - Rowwise block striped
 - Columnwise block striped

● Blocking send/receive functions
 - MPI_Send()
 - MPI_Recv()

● Overlapping communications with computations

	Slide 1
	All-pairs Shortest Path Problem
	Slide 3
	Slide 4
	Why It Works
	Slide 6
	Slide 7
	Communication
	Slide 9
	Two Data Decompositions
	Comparing Decompositions
	Slide 12
	File Input
	Slide 14
	Point-to-point Communication
	Function MPI_Send
	Return from MPI_Send
	Function MPI_Recv
	Return from MPI_Recv
	Coding Send/Receive
	Inside MPI_Send and MPI_Recv
	Deadlock
	Dynamic 1-D Array Creation
	Dynamic 2-D Array Creation
	Slide 25
	Slide 26
	Computation/communication Overlap
	Slide 28
	Slide 29
	Slide 30

