Floyd's Algorithm
A method to find the shortest distance between

two points when multiple paths are possible.

Can be represented as a directed graph which
must be traversed in a particular direction.

The weights of the edges represent the “distance”
between the vertices.

The graph can be represented as a
numerical adjacency matrix.

4

A B C D E

3

 —

m O O W »

(‘S\AI 3
‘/2'
/

Resulting Adjacency Matrix Containing Distances

Advantages to using a matrix

* The adjacency matrix a[i,j] initially holds the
lengths between each pair of vertices

 Computationally, there Is constant time access
to each element

 When the analysis is complete, the shortest
path distance can be stored in the matrix — this
keeps memory usage the same

The sequential algorithm

n Is the number of vertices

for k — 0 to n-1
fori < 0 ton-1
forj— O to n-1
afl,j] — min (af1,j, a[i,k] + a[k.jj)
endfor

endfor
endfor

n°® algorithm

Pictorial representation of algorithm

Shortest path from i to k

‘ through O, 1, ..., k-1

Shortest path from k to j

‘ through O, 1, ..., k-1

Computed
in previous

Shortest path from i to j iterations ~J

through O, 1, ..., k-1

Designing the parallel algorithm

Domain or functional decomposition?

* Look at pseudocode

e Same assignment statement executed n3 times

* No functional parallelism

Domain decomposition: divide matrix a into its n? elements

* Each aJi,j] represents a task — need to find a shortest
distance.

* However, to find the distance need to look at afi,k] and
alk,]] for all k

Communication

» Every task in column m needs the value of alk,m]
* Every task in row m needs the value of ajm,K]

» Can this value be broadcast?

Let k control the outer loop of the algorithm:

a[i,k] = min(a[i,k],afi,k]+a[k,k] < O
alk,j] = min(alk,j], a[k,k]+a[k,]]

T

0

A broadcast is possible for specific values of k

Communication (cont.)

Primitive tasks

[teration k:
every task

in row k
broadcasts
its value w/in
task column

OO0OO00O0

O0O0

O
O

OO
O O
O O
OO
O O
(@)
OO
N0
O O
OO
O O

(c)

OO0
OO
OO
OO
OO

OO0
O O
OO
OO
O O

ONONGO,
OO0O
OO0O0O
©C Q0O
OO0O

(b
ONONG®
O0O0O
O0O
O 0O
O0O

(d)

OO
O

O O

OO
O O
O O
ONO
O O

Updating
al 3,4] when
k=1

[teration Kk:
every task

in column k
broadcasts
its value w/in
task row

Agglomeration and Mapping

Number of tasks: static, depends on value of n
Communication among tasks: structured
Computation time per task: constant

Strategy:
* Agglomerate tasks to minimize communication

* Create one combined task per MPI process

Consider two data decompositions

Columnwise block stripe

Rowwise block striped

(a)

Comparing the two decompositions

Columnwise block striped

Broadcast within columns eliminated
Rowwise block striped

Broadcast within rows eliminated

Reading matrix from file simpler because elements
in C/C++ matrices stored in row major order

Choose rowwise block striped decomposition

How to input a large adjacency matrix

Assume that the matrix is stored row by row in a file.

1) Each process reads its own row (or rows) of initial
data. The process must seek the correct location In
the shared file.

2) A master process reads all the rows and sends the
data to the appropriate process.

Method 2) minimizes memory usage because only one
process needs to read and send the data.

Eliminates the seek in method 1).

File Input — reading row by row

How are rows distributed?
n = size of the matrix, p = number of processes

Let process | have rows:
floor(i*n/p) to floor((i+1)*n/p)-1

If | = p-1, number of rows = celil(n/p)

cell(n/p) is the maximum number of rows any process will

have, so
 process p-1 can read the rows and distribute them.

e It reads its own rows last.

Point-to-point Communication Is required to
send and recelve the elements of a

* Involves a pair of processes
* One process sends a message
* Other process receives the message

Process h Process i Process |

Compute Compute

Send to j

Compute \ Wait
Receive from 1
\/ Compute

swy

1
~

Compute

Function MPI_Send() — a blocking MPI
function

int MPI_Send (
volid *message //memory location,
int count //# of 1tems to send,
MPI_Datatype datatype,
int dest //rank of receiving process,
int tag //message 1D,

MPI Comm comm

Return from MPI_Send()

* Function blocks until message buffer free
 Message buffer is free when

- Message copied to system buffer, or

- Message transmitted
* Typical scenario

- Message copied to system buffer

- Transmission overlaps computation

Function MPI_Recv() - returns when the expected
message Is available in the local buffer

int MPI_Recv (
vold *message//data stored here,
int count//maximum amount of memory,
MPI_Datatype datatype,
int source//ranking of sendor,
int tag//message 1D,
MPI_Comm comm,

MPI Status *status//was 1t successful

Return from MPI_Recv()

* Function blocks until message in buffer
 |f message never arrives, function never returns

 MPI|_Status Is a structure guaranteed to have a
field MPl_ERROR

* |f the message size Is larger than allocated
memory, an overflow error occurs

* |f the message size is less than count, it Is
stored at the beginning of the allocated
memory.

Relationship of Send/Receive in the code

if (ID == j) {

Recelve from 1

Receive is before Send.
¥ Why does this work?

if (ID == i) {

Send to j

Inside MPI_Send() and MPI_Recv()

Sending Process Receiving Process

Program System System Program
Memory | Buffer Buffer Memory

MPI_Send() MPI_Recv()

Deadlock Is possible in MPI

Deadlock: process waiting for a condition that will
never become true

Easy to write send/receive code that deadlocks
Two processes: both receive before send
Send tag doesn’t match receive tag

Process sends message to wrong destination
process

Dynamic 1-D Array Creation -
Using malloc() Is straightforward

2

HEEEEEEEEE

Dynamic 2-D Array Creation — matrices are stored
INn row major order
B(n,m) — B Is a pointer to a pointer

Run-time Stack
Bstorage

T/
r

reer [N

-II\.II

Programming 2-D array allocation

Int **B, *Bstorage;
Bstorage = (int*)malloc(m*n*sizeof(int));
B = (int**)malloc(m*sizeof(int*));

for(i=0; 1 <m; I++)
B[i] = &Bstorage[i*n]

Parallel algorithm

void compute_shortest _paths (int id, int p, dtype **a, int n)
{

int 1, J, K;

int offset; /* Local index of broadcast row */

int root; /* Process controlling row to be bcast */

int* tmp; /* Holds the broadcast row */

tmp = (dtype *) malloc (n * sizeof(dtype));
for (k = 0; k < n; k++) {
root = BLOCK_OWNER(k,p,n);
if (root ==id) {
offset = k - BLOCK_LOW(id,p,n);
for j =0;]<n;j++)
tmp[i] = a[offset][]];
}

MPI_Bcast (tmp, n, MPI_TYPE, root, MPI_COMM_WORLD);
for (= 0; 1 < BLOCK_SIZE(id,p,n); i++)
for (j =0;j<n;j++)
a[i](] = MIN(&[i][j].a[i][K]+tmp(j]);

}
free (tmp);

}

Computation/communication overlap

0

Process
(\O)
e
B,

Compute

Key: Set up message

B Wait

Computational Complexity

* Innermost loop has complexity ©(n)
for (j =0;] <n; J++)

« Middle loop executed at most cell(n/p) times
for (I=0;1<BLOCK_ SIZE(id,p,n); i++)

» Outer loop executed n times
for (k = 0; k < n; k++)

e Overall complexity ©(n3/p)

Communication complexity

 No communication in inner loop
 No communication in middle loop

» Broadcast in outer loop — complexity is ©(n log p)

« Overall complexity ®(n? log p)

Summary

* Two matrix decompositions
- Rowwise block striped
- Columnwise block striped
 Blocking send/receive functions
- MP1_Send()
- MPI_Recv()
* Overlapping communications with computations

	Slide 1
	All-pairs Shortest Path Problem
	Slide 3
	Slide 4
	Why It Works
	Slide 6
	Slide 7
	Communication
	Slide 9
	Two Data Decompositions
	Comparing Decompositions
	Slide 12
	File Input
	Slide 14
	Point-to-point Communication
	Function MPI_Send
	Return from MPI_Send
	Function MPI_Recv
	Return from MPI_Recv
	Coding Send/Receive
	Inside MPI_Send and MPI_Recv
	Deadlock
	Dynamic 1-D Array Creation
	Dynamic 2-D Array Creation
	Slide 25
	Slide 26
	Computation/communication Overlap
	Slide 28
	Slide 29
	Slide 30

