Document Classification Problem

Search directories, subdirectories for
documents (look for .html, .txt, .tex, etc.)

Using a dictionary of key words, create a
profile vector for each document

Store profile vectors

Data Dependence Graph (1)

Read
Dictionary

Identify
Documents

Read
Documents

Generate
Document
Vectors

Write
Document
Vectors

Data Dependence Graph (2)

Read
Dictionary

Identify
Documents

Read
Document 0

Read
Document 1

Read
Documentn-1

Generate
Document
Vectorn-1

Generate
Document
Vector 1

Generate
Document
Vector 0

Write
Document
Vectors

Agglomeration and Mapping

Number of tasks not known at compile time
Can not do static allocation of tasks

Tasks do not communicate with each other
Embarassingly parallel taks

Time needed to perform tasks varies widely
Load balancing becomes an important issue

Strategy: map tasks to processes at run time

Manager/worker-style Algorithm

A

Assign ssign
job job
Return Return
completed completed

Can also be viewed as domain partitioning
with run-time allocation of data to tasks

Manager/Worker vs. SPMD

SPMD (single program multiple data)
Every process executes same functions
Our prior programs fit this mold

Manager/worker

Manager process has different responsibilities
than worker processes

An MPI manager/worker program has an early
control flow split (manager process one way,
worker processes the other way)

Roles of Manager and Workers

Read
Dictionary

Identify
Documents

Read
Documents

Write
Document
Vectors

Generate
Document
Vectors

Worker

Manager

Manager Pseudocode

ldentify documents
Receive dictionary size from worker O
Allocate matrix to store document vectors
repeat
Receive message from worker
If message contains document vector
Store document vector
endif
If documents remain then Send worker file name
else Send worker termination message
endif
until all workers terminated
Write document vectors to file

Worker Pseudocode

Send first request for work to manager

if worker O then
Read dictionary from file

endif

Broadcast dictionary among workers

Build hash table from dictionary

if worker O then
Send dictionary size to manager

endif

repeat
Receive file name from manager
if file name is NULL then terminate endif
Read document, generate document vector
Send document vector to manager

forever

Task/Channel Graph

(Directory Information] [Results File]

Manager

Document
File

Documenﬂ

Document
File

[Document

Worker O

File File

(Dictionary File J

Creating a Workers-only Communicator

Dictionary is broadcast among workers

To support workers-only broadcast, need
workers-only communicator

Can use MPI_Comm_split()

Manager passes MPI_UNDEFINED as the
value of split_key, meaning it will not be
part of any new communicator

Workers-only Communicator

int 1d;
MPI_Comm worker_comm;

if (!'id) /* Manager */
MPI_Comm_split (MPI_COMM_WORLD,
MPI_UNDEFINED, 1id, &worker_comm);

else /* Worker */
MPI_Comm_split (MPI_COMM_WORLD, O,
1d, &worker_comm);

Nonblocking Send / Receive

MPI_Isend(), MPI_Irecv() initiate operation
MPI_Wait() blocks until operation complete

Calls can be made early
MPI_Isend() as soon as value(s) assigned
MPI_Irecv() as soon as buffer available
Can eliminate a message copying step

Allows communication / computation overlap

Function MPI_Irecv()

int MPI_Irecv (

void *buffer,
int cnt,
MPI_Datatype dtype,
int src,
int tag,

C MPI:Request *handle >

Pointer to object that identifies
communication operation

)

Function MPI_Isend()

int MPI_Isend (

void *buffer,
int cnt,
MPI_Datatype dtype,
int dest,
int tag,

C MPI:Request *handle >

Pointer to object that identifies
communication operation

)

Function MPI_Wait()

A call to MPI_Wait() returns when the operation
identified by handle is complete.

int MPI_Wait (
MPI_Request *handle,

MPI Status *status

)

MPI_Status - member variables:
* Rank of sender

* Tag of message

* Length of message

Function MPI_Probe()

int MPI_Probe (

int src,
int tag,
MPI_Comm comm,

MPI Status *status
)

* Blocks until message is available to be received,

but does not consume the message from the input

buffer.

* The MPI_Status variable fields are filled in and
can be used to learn the sender and the tag.

Function MPI Get count

int MPI_Get_count (
MPI_Status *status,
MPI_Datatype dtype,

int *count

)

The returned count variable is the total
number of datatype elements that were received
in a message.

Usage of MPI_Get_count()

MPI|_Status status;

I/l Receive at most MAX _NUMBERS from process zero

MPI_Recv(numbers, MAX NUMBERS, MPI_INT, 0,0,MPI_COMM_WORLD,
&status);

/[After receiving the message, check the status to determine

/[how many numbers were actually received

MPI_Get_count(&status, MPI_INT, &number_amount);

Il Print off the amount of numbers, and also print additional

/[information in the status object

printf("1 received %d numbers from 0. Message source = %d, tag = %d\n",
number_amount, status.MPI_SOURCE, status.MP|_TAG);

Pipelining

Identify
Document 0

Read
Document 0

Generate
Document
Vector 0

Write
Document
Vector 1

Identify
Document 1

Read
Document 1

Generate
Document
Vector 1

Write
Document
Vector 1

Identify
Document 2

Read
Document 1

Generate
Document
Vector 1

Write
Document
Vector 1

v

Pipelined Manager Pseudocode

a— 0 {assigned jobs}
j«— 0 {available jobs}
w «— 0 {workers waiting for assignment}
repeat
if j > 0) and (w > 0) then
assign job to worker
Jj—j-1L,w—w-1,a—a+1
elseif (j > 0) then
handle an incoming message from workers
increment w
else
get another job
increment j
endif
until (@ = n) and (w = p)

Function MPI_Testsome()

int MPI_Testsome (

int in_count, /* IN - Number of
nonblocking receives to check */

MPI_Request *handlearray, /* IN -
Handles of pending receives */

int *out_count, /* OUT - Number of
completed communications */

int *index_array, /* OUT - Indices of
completed communications */

MPI_Status *status_array) /* OUT -
Status records for completed comms */

Usage of MPI_Testsome()

* MPI_Testsome() is a local operation, which returns
Immediately

* If no operation has completed it returns out_count = 0.

* A send or receive operation is guaranteed to be
eventually successful

Summary

Manager/worker paradigm
Dynamic number of tasks
Variable task lengths
No communications between tasks
New tools for “kit”
Create manager/worker program
Create workers-only communicator
Non-blocking send/receive
Testing for completed communications

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

