

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Document Classification Problem

 Search directories, subdirectories for
documents (look for .html, .txt, .tex, etc.)

 Using a dictionary of key words, create a
profile vector for each document

 Store profile vectors

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Data Dependence Graph (1)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Data Dependence Graph (2)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Agglomeration and Mapping

 Number of tasks not known at compile time
Can not do static allocation of tasks

 Tasks do not communicate with each other
Embarassingly parallel taks

 Time needed to perform tasks varies widely
Load balancing becomes an important issue

 Strategy: map tasks to processes at run time

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Manager/worker-style Algorithm

Can also be viewed as domain partitioning
with run-time allocation of data to tasks

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Manager/Worker vs. SPMD

 SPMD (single program multiple data)
 Every process executes same functions
 Our prior programs fit this mold

 Manager/worker
 Manager process has different responsibilities

than worker processes
 An MPI manager/worker program has an early

control flow split (manager process one way,
worker processes the other way)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Roles of Manager and Workers

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Manager Pseudocode
Identify documents
Receive dictionary size from worker 0
Allocate matrix to store document vectors
repeat

Receive message from worker
if message contains document vector

Store document vector
endif
if documents remain then Send worker file name
else Send worker termination message
endif

until all workers terminated
Write document vectors to file

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Worker Pseudocode
Send first request for work to manager

if worker 0 then

Read dictionary from file

endif

Broadcast dictionary among workers

Build hash table from dictionary

if worker 0 then

Send dictionary size to manager

endif

repeat

Receive file name from manager

if file name is NULL then terminate endif

Read document, generate document vector

Send document vector to manager

forever

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Task/Channel Graph

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Creating a Workers-only Communicator

 Dictionary is broadcast among workers
 To support workers-only broadcast, need

workers-only communicator
 Can use MPI_Comm_split()
 Manager passes MPI_UNDEFINED as the

value of split_key, meaning it will not be
part of any new communicator

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Workers-only Communicator

int id;
MPI_Comm worker_comm;
...
if (!id) /* Manager */
 MPI_Comm_split (MPI_COMM_WORLD,
 MPI_UNDEFINED, id, &worker_comm);

else /* Worker */
 MPI_Comm_split (MPI_COMM_WORLD, 0,
 id, &worker_comm);

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Nonblocking Send / Receive

 MPI_Isend(), MPI_Irecv() initiate operation
 MPI_Wait() blocks until operation complete
 Calls can be made early

 MPI_Isend() as soon as value(s) assigned
 MPI_Irecv() as soon as buffer available

 Can eliminate a message copying step
 Allows communication / computation overlap

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function MPI_Irecv()

int MPI_Irecv (
 void *buffer,
 int cnt,
 MPI_Datatype dtype,
 int src,
 int tag,
 MPI_Comm comm,
 MPI_Request *handle
)

Pointer to object that identifies
communication operation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function MPI_Isend()

int MPI_Isend (
 void *buffer,
 int cnt,
 MPI_Datatype dtype,
 int dest,
 int tag,
 MPI_Comm comm,
 MPI_Request *handle
)

Pointer to object that identifies
communication operation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function MPI_Wait()
A call to MPI_Wait() returns when the operation
identified by handle is complete.

int MPI_Wait (

 MPI_Request *handle,

 MPI_Status *status

)

MPI_Status – member variables:
● Rank of sender
● Tag of message
● Length of message

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function MPI_Probe()

int MPI_Probe (
 int src,
 int tag,
 MPI_Comm comm,
 MPI_Status *status
)

● Blocks until message is available to be received,
but does not consume the message from the input
buffer.
● The MPI_Status variable fields are filled in and
can be used to learn the sender and the tag.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function MPI_Get_count

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Usage of MPI_Get_count()

 MPI_Status status;
 // Receive at most MAX_NUMBERS from process zero
 MPI_Recv(numbers, MAX_NUMBERS, MPI_INT, 0,0,MPI_COMM_WORLD,
 &status);
// After receiving the message, check the status to determine
// how many numbers were actually received
MPI_Get_count(&status, MPI_INT, &number_amount);

// Print off the amount of numbers, and also print additional
// information in the status object
printf("1 received %d numbers from 0. Message source = %d, tag = %d\n",
 number_amount, status.MPI_SOURCE, status.MPI_TAG);

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pipelining

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pipelined Manager Pseudocode
a  0 {assigned jobs}

j  0 {available jobs}

w  0 {workers waiting for assignment}

repeat

if (j > 0) and (w > 0) then

assign job to worker

j  j – 1; w  w – 1; a  a + 1

elseif (j > 0) then

handle an incoming message from workers

increment w

else

get another job

increment j

endif

until (a = n) and (w = p)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function MPI_Testsome()
int MPI_Testsome (

 int in_count, /* IN - Number of
 nonblocking receives to check */

MPI_Request *handlearray, /* IN -
 Handles of pending receives */

int *out_count, /* OUT - Number of
 completed communications */

int *index_array, /* OUT - Indices of
 completed communications */

MPI_Status *status_array) /* OUT -
 Status records for completed comms */

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Usage of MPI_Testsome()

● MPI_Testsome() is a local operation, which returns
immediately

● If no operation has completed it returns out_count = 0.
● A send or receive operation is guaranteed to be

eventually successful

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary

 Manager/worker paradigm
 Dynamic number of tasks
 Variable task lengths
 No communications between tasks

 New tools for “kit”
 Create manager/worker program
 Create workers-only communicator
 Non-blocking send/receive
 Testing for completed communications

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

